Emerging Medications and Technology for Improved Diabetes Management

Kelsey Krushinski, PharmD, BCPS

Disclosures

Kelsey Krushinski, PharmD, BCPS

- Has no relevant financial relationships with ineligible companies to disclose.
- There are no conflicts of interest related to this educational content.

Objectives

1. Assess the impact of emerging diabetes technologies on disease management and interprofessional collaboration.

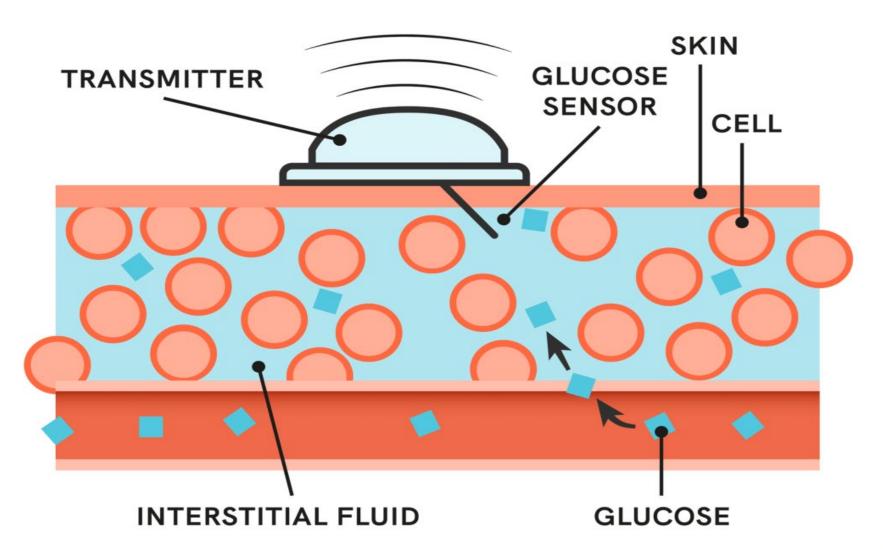
2. Evaluate the latest advancements in diabetes pharmacotherapy and their role in optimizing patient outcomes through an individualized, patient-centered approach.

3. Define perioperative risks associated with SGLT2 inhibitors & GLP-1 receptor agonists.

EMERGING DIABETES TECHNOLOGY

Insulin Pumps

Continuous Glucose Monitors (CGMs)



Automated Insulin
Delivery (AID)
Systems

Smart Insulin Pens

CGMs Benefits & Considerations

Benefits

- Real time cause & effect
- A1c improvements
- Alerts
- Patterns
- Flexibility
- Approved for insulin dosing

Considerations

- Cost
- Alarm fatigue
- Technology readiness level
- Compatibility
- Benefits increase with education

Types of CGMs

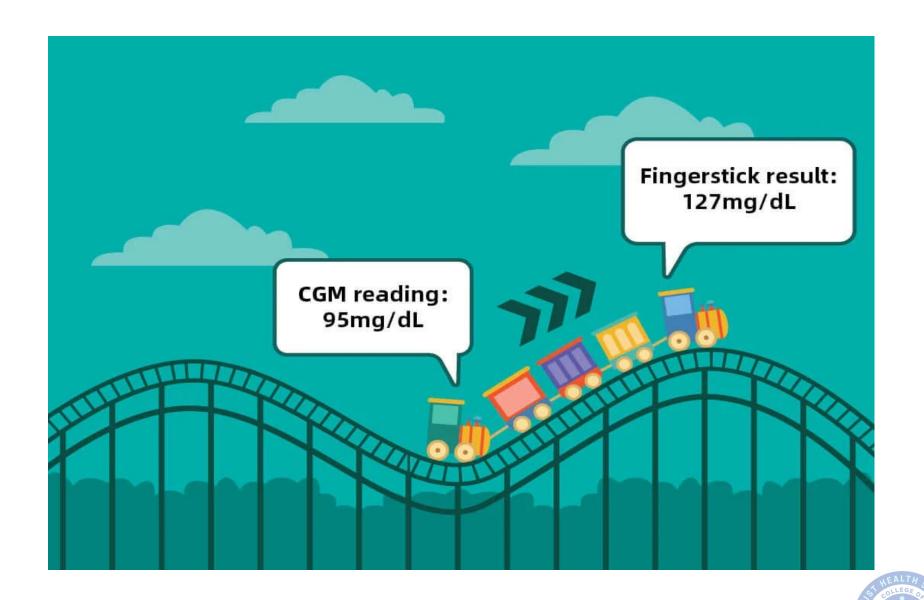
Personal

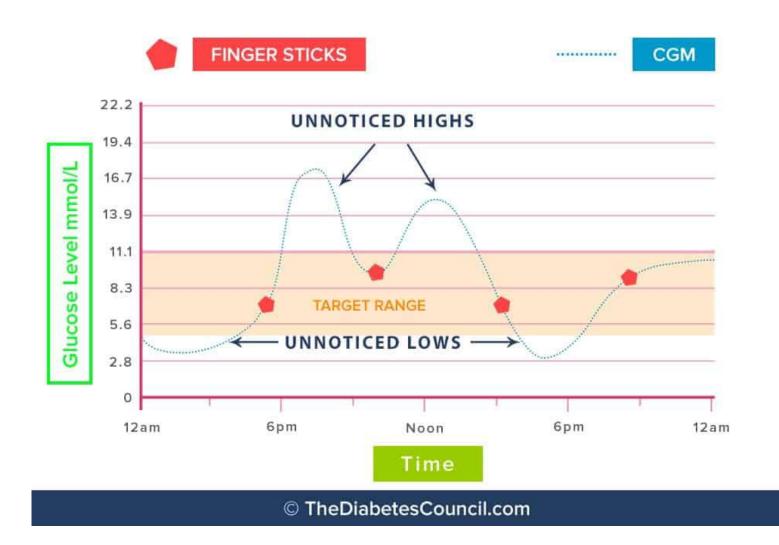
Professional

OTC Options

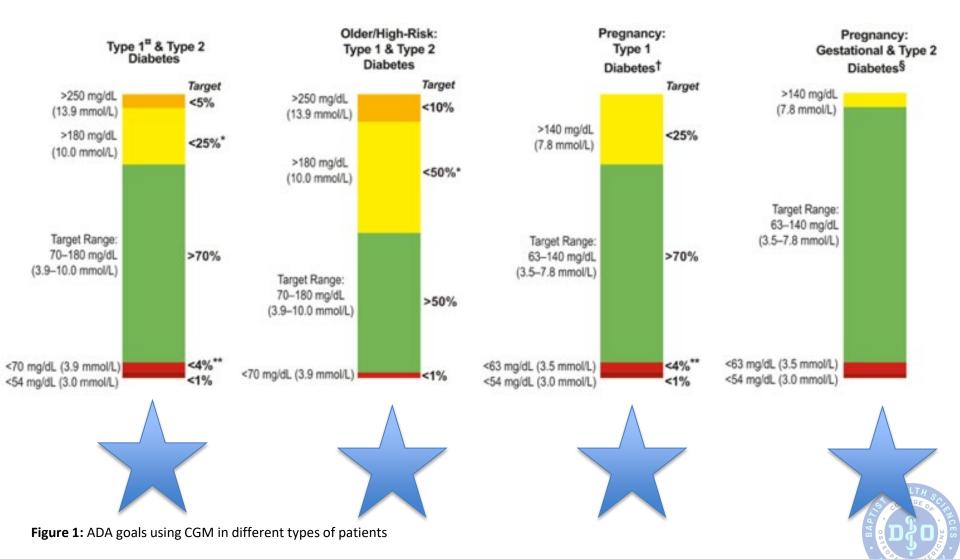
Application Options

Continuous Glucose Monitors (CGMs)

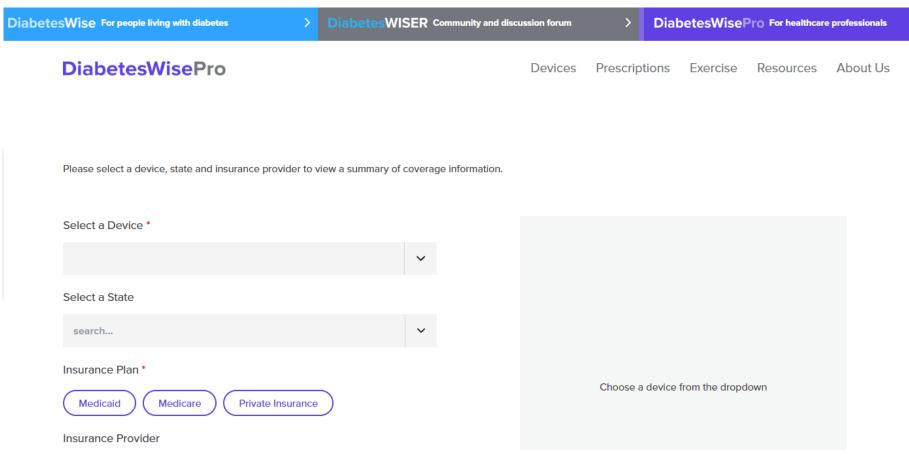





Medtronic https://www.medtronicdiabetes.com/



CGMs – Ambulatory Glucose Report



Time in Range Goals

Manov A, et al. 2023

Prescribing CGMs

Smart Insulin Pens

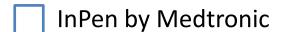
Types of Pens

Benefits

- Connected Insulin Pens
- Insulin Pen Caps
- Record doses
- Calculate doses
- Sync with CGMs & provide AGP Reports
- Alerts
- Avoid insulin stacking
- Expiration notification

Smart Insulin Pen Candidates

MDI insulin users:


- Miss doses
- Exercise
- Difficulty with dose calculations
- Persistent hyperglycemia
- Random hypoglycemia
- Less comfortable with technology
- Dexterity & vision issues

Smart Insulin Pen Examples

Smart Pens

Smart Pen Caps

Tempo Smart Button™ by Lilly

https://www.medtronicdiabetes.com/products/inpen-smart-insulin-pen-system https://www.bigfootbiomedical.com/bigfoot-unity.html https://www.lillytempo.com/getting-started

Insulin Pumps

Manual System (Open Loop)

Deliver basal insulin on **preset** settings

<u>User-entered</u> boluses required

CGM & pump function independently AID Systems
(Hybrid Closed-Loop)

- 1. Insulin pump
 - 2. CGM
 - 3. Algorithm

Communication between pump & CGM for <u>automatic</u> insulin adjustments

<u>Manual</u> input for carb intake, activity

AID (Hybrid Closed-Loop) Systems

https://www.tandemdiabetes.com/products/insulin-pumps/tandem-mobile and the product of the pro

https://www.omnipod.com/what-is-omnipod/omnipod-5

https://www.betabionics.com/hcp/

AID Considerations

- Improved TIR
- A1c improvements
- Lower rates of hypo/hyperglycemia
- Better match physiologic needs
- Less patient anxiety & stress
- More accurate glucose management

- Requires 2 devices
- Alarm fatigue
- Imaging & scans
- Still requires some manual entry

Considerations

Preferred Candidates for AID

Type 1 DM

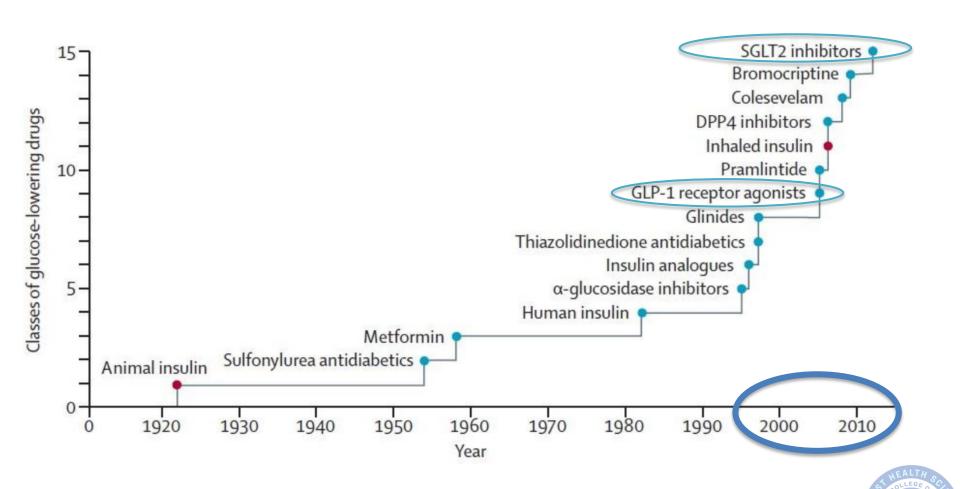
Type 2 DM (pancreatectomy, CF) – Omnipod5

Multiple daily insulin injections

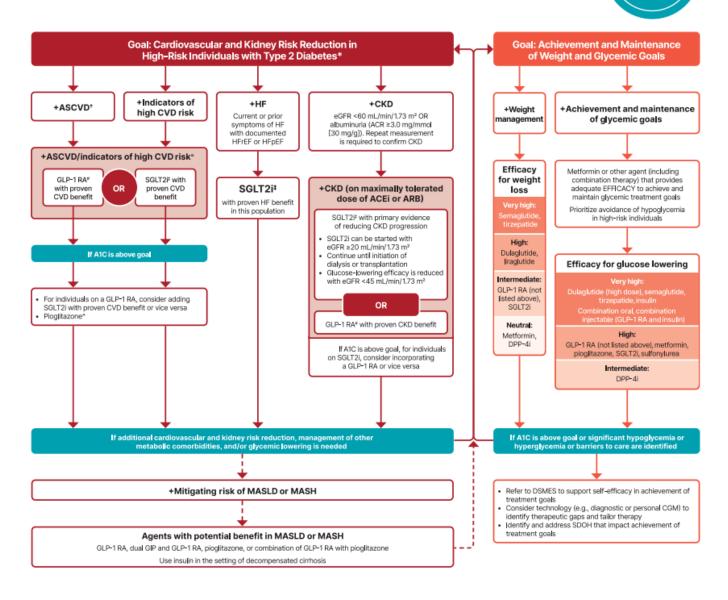
Difficulty counting carbs

Pregnancy

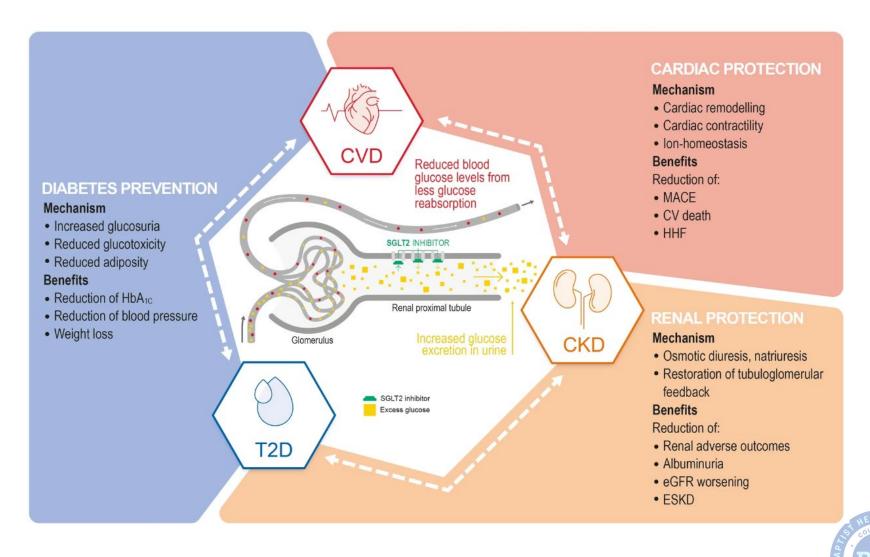
Our Role as Healthcare Providers


- Identify device candidates
- Provide training & education
- Prescribe BGM, CGM, & smart pens
- Refer for AID systems
- Refer patients to DSMES programs & resources, diabetes tech education & training
- Use AGP report data to make interventions
- Familiarize with billing & coding

DIABETES PHARMACOTHERAPY UPDATES



History of Diabetes Therapeutic Advances


HEALTHY LIFESTYLE BEHAVIORS; DIABETES SELF-MANAGEMENT EDUCATION AND SUPPORT; SOCIAL DETERMINANTS OF HEALTH

To avoid therapeutic inertia, reassess and modify treatment regularly (3–6 months)

SGLT-2 Inhibitor Mechanism of Action

SGLT-2 Inhibitors Indications

Sotagliflozin (Inpefa®) Empagliflozin (Jardiance®) **TYPE 2 DIABETES** Dapagliflozin (Farxiga®) Canagliflozin (Invokana®) Ertugliflozin (Steglatro®) Bexagliflozin (Brenzavvy®)

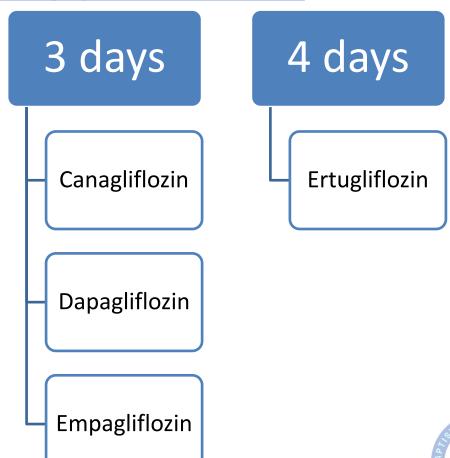
SGLT2 Adverse Events

Genitourinary fungal infections

UTIs

Dehydration, volume depletion

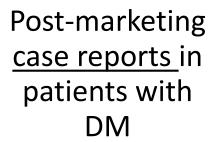
AKI


Lower limb amputation

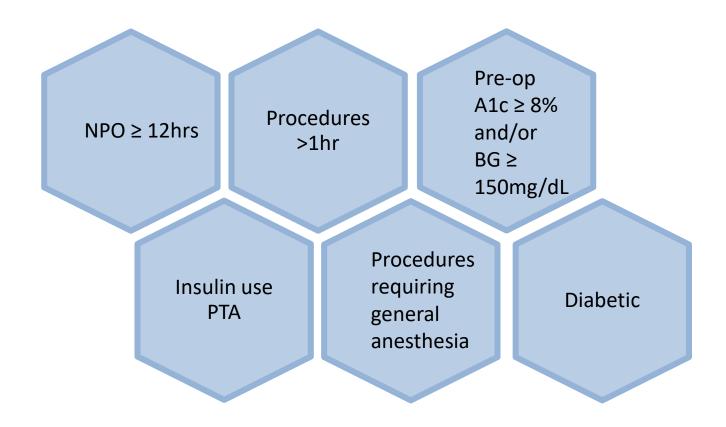
Euglycemic DKA

SGLT2 Inhibitors – Peri-operative Risk

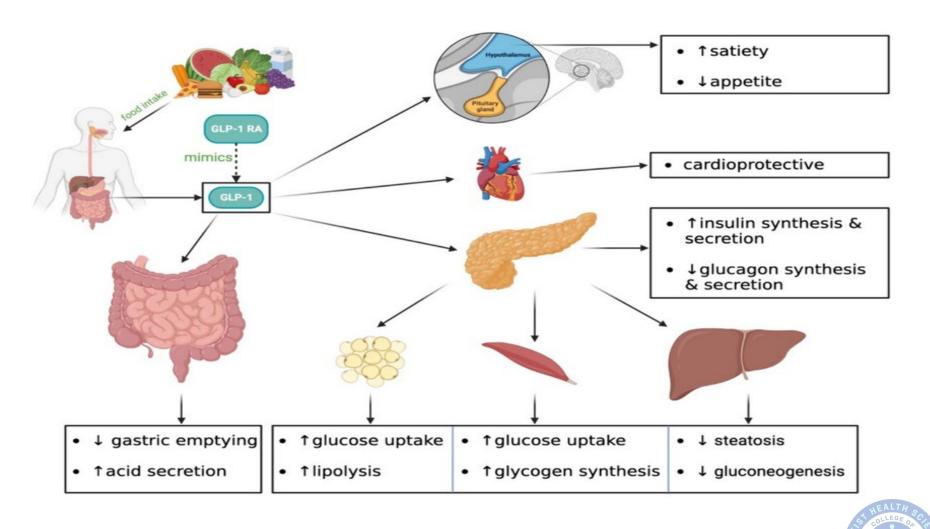
Increased risk of euglycemic DKA


Discontinue before elective or scheduled surgery:

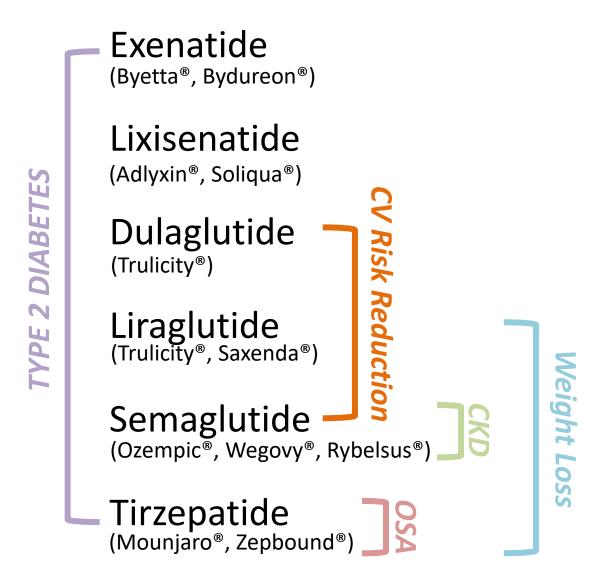
Euglycemic DKA Incidence


Not noted in large DM, HF, CKD trials

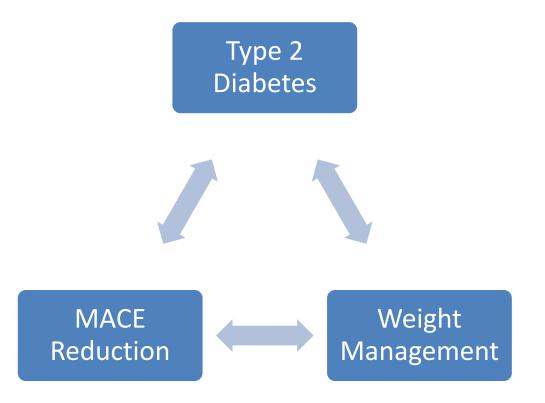
FDA safety notice 2015



SGLT2 Inhibitors – Peri-operative Risk Assessment



GLP-1 Agonist Mechanism of Action



GLP-1 Agonists Indications

GLP-1 Agonists - Benefits

			Liraglutide (s.c. 3 mg) ⁶⁸ – (s.c. 0.5 and 1.0 mg) ⁵³	Semaglutide (s.c. 2.4 mg) ⁷¹ – (s.c. 0.5 and 1.0 mg) ⁵⁴	Tirzepatide (s.c. 5, 10 and 15 mg) ⁷⁸	Dulaglutide (s.c. 1.5 mg) ⁵⁹
9	Weight loss (mean % change in body weight) Data from people with obesity/overweight without T2D	GLP-1 RA / Placebo	-8.0% / -2.6%	-14.9% / -2.4%	-15.0% -19.5% / -3.1% -20.9%	/
*	MACE (% of patients with primary composite outcome of time to first occurrence of MACE) Data from people with T2D	GLP-1 RA / Placebo	13.0% / 14.9%	6.6% / 8.9%	/	12.0% / 13.4%

GLP-1 Agonists Adverse Events

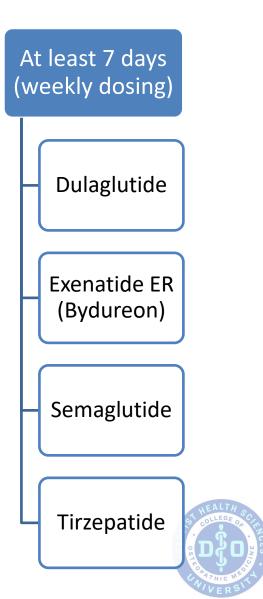
Nausea, vomiting, abdominal pain

Pancreatitis

Gallbladder disease

Thyroid C-cell tumors

Delayed gastric emptying


Pulmonary Aspiration

GLP-1 Agonists – Peri-operative Risk

Risk of pulmonary aspiration

Discontinue before elective or scheduled surgery:

At least 1 day (daily dosing) Exenatide IR (Byetta) Liraglutide Lixisenatide

Ongoing Research & Recent Literature Updates – GLP-1 Agonists

Trial	Study & Results	Follow-up
ACHIEVE-1 ¹⁸ orforglipron	 Phase III, <u>oral</u> once daily GLP-1 agonist A1c 1.3-1.6% decrease ~8% weight loss 	Data presented at ADA 2025 Submissions expected 2025-2026
essence ¹⁹ semaglutide (Wegovy®)	 Ongoing, phase III RCT of MASH & liver fibrosis patients to semaglutide vs placebo Improvements in liver histologic findings 	FDA decision expected later 2025
FLOW ²⁰ semaglutide (Ozempic [®])	 24% reduction in kidney outcomes & death from CV causes in patients with T2DM & CKD. 	Jan 2025 semaglutide (Ozempic®) approved to slow CKD in T2DM
EVOKE ²¹ EVOKE-PLUS semaglutide	 Ongoing phase III RCTs evaluating semaglutide vs placebo in early stage Alzheimer's 	Completion of main phase expected 9/2025

Conclusions

Diabetic technology & treatments rapidly changing

Diligence to provide guideline-based therapies in the most cost-effective manner

Impactful morbidity & mortality outcomes

References

- 1. ADA Professional Practice Committee. Diabetes Care. 2025;48 (Suppl 1):S146-S159.Cengiz E et al.
- 2. Ambalavanan J, Isaacs D, Lansang MC. Diabetes technology: A primer for clinicians. *Cleve Clin J Med*. 2024;91(6):353–360. doi:10.3949/ccjm.91a.23073
- 3. https://pro.diabeteswise.org/
- 4. Zaugg, Stephanie D., et al. "Diabetes numeracy and blood glucose control: association with type of diabetes and source of care." Clinical diabetes: a publication of the American Diabetes Association 32.4 (2014):152-157
- 5. Akturk HK. Recent advances in diabetes technology and activities of the American Diabetes Association Diabetes Technology Interest Group. *Clin Diabetes*. 2024;42(2):316–321. doi:10.2337/cd23-0080
- 6. Shaw et al, 2024 Consensus Considerations and Good Practice Points for Use of Continuous Glucose Monitoring Systems in Hospital Settings. Diabetes Care December 2024; 47 (12):2062-2075.
- 7. Martens TW, Simonson GD, Bergenstal RM. Using continuous glucose monitoring data in daily clinical practice. *Cleve Clin J Med*. 2024;91(10):611–619. doi:10.3949/ccjm.91a.23090. Accessed June 30, 2025.
- 8. Manov A, Nazha SA, and House J. World Journal of Advanced Research and Reviews, 2023, 17 (03), 824-830. https://doi.org/10.30574/wjarr.2023.17.3.0478
- 9. Templer S. Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions. Front Endocrinol (Lausanne). 2022 Jun 6;13:919942
- 10. Kahn SE, Cooper ME, Del Prato S. "Pathophysiology & treatment of type 2 diabetes: perspectives on the past, present, and future." *The Lancet* 383.9922 (2014):1068-1083.
- 11. American Diabetes Association Professional Practice Committee; 9. Pharmacologic Approaches to Glycemic Treatment: *Standards of Care in Diabetes—2025. Diabetes Care* 2025; https://diabetesjournals.org/care/issue/48/Supplement 1.
- 12. Evans, M., Morgan, A.R., Bain, S.C. *et al.* Defining the Role of SGLT2 Inhibitors in Primary Care: Time to Think Differently. *Diabetes Ther* **13**, 889–911 (2022). https://doi.org/10.1007/s13300-022-01242-y
- 13. Raiten JM, Morlok A, D'Ambrosia S, Ruggero MA, Flood J. Perioperative Management of Patients Receiving Sodium-Glucose Cotransporter 2 Inhibitors: Development of a Clinical Guideline at a Large Academic Medical Center. J Cardiothorac Vasc Anesth. 2024;38(1):57-66. doi:10.1053/i.ivca.2023.10.011
- 14. Rosenstock J, Ferrannini E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern With SGLT2 Inhibitors. Diabetes Care 1 September 2015; 38 (9): 1638–1642. https://doi.org/10.2337/dc15-1380
- 15. Salazar, et al. (2024). Rare cutaneous adverse reactions associated with GLP-1 agonists: a review of the published literature. Archives of Dermatological Research. 316. 10.1007/s00403-024-02969-3.
- 16. Michos ED, Lopez-Jimenez F, Gulati M. Role of GLP-1 Receptor Agonists in Achieving Weight Loss and Improving Cardiovascular Outcomes in People with Overweight and Obesity. *JAHA*. 2023 https://www.ahajournals.org/doi/10.1161/JAHA.122.029282
- 17. Kindel TL, Wang AY, Wadhwa A, et al. Multisociety clinical practice guidance for the safe use of glucagon-like peptide-1 receptor agonists in the perioperative period. Surgery for Obesity and Related Diseases. 2024;20(12). doi:https://doi.org/10.1016/j.soard.2024.08.033
- 18. Rosenstock J, Hsia S, Ruiz LN, et al. Orforglipron, an oral small-molecule GLP-1 receptor agonist, in early type 2 diabetes. *New Eng J Med.* 2025; DOI: 10.1056/NEJMoa2505669
- 19. Sanyal AJ, Newsome PN, Kliers I, et al. Phase 3 trial of semaglutide in metabolic dysfunction-associated steatohepatitis. *New Eng J Med*. 2025;392(17). doi:10.1056/NEJMoa241325
- 20. Perkovic V, Tuttle KR, Rossing P, et al. Effects of Semaglutide on chronic kidney disease in patients with type 2 *diabetes. N Engl J Med 2024;391:109-121*.
- 21. Cummings JL, Atri A, Feldman HH, Hansson O, Sano M, Knop FK, Johannsen P, León T, Scheltens P. evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating efficacy, safety, and tolerability of semaglutide in early-stage symptomatic Alzheimer's disease. Alzheimers Res Ther. 2025 Jan 8;17(1):14. doi: 10.1186/s13195-024-01666-7. PMID: 39780249; PMCID: PMC11708093.